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Abstract
The extension to recursion over holes of the Gilleron and Pain method for calculating

partition functions of a canonical ensemble of non-interacting bound electrons is
presented as well as a generalization for the efficient computation of

collisional line broadening.

1. Introduction

In plasmas, super-transition-array (STA) methods are often used to compute the
emission and opacity of intermediate to high-Z elements where detailed configuration
accounting methods would be prohibitively expensive1 2.  The STA method requires the
calculation of independent electron partition functions under the constraint that the total
occupation of a group of spin orbitals (referred to as a super-shell) has an integer
occupation.

For large super-shells and/or low temperatures, efficient recursion relations for
generating these partition functions suffer from numerical instability due to precision
cancellations involving sums of large terms of alternating sign3.  Recently a slightly less
efficient algorithm has been advanced which, however, does not suffer from numerical
instabilities4.  It is based upon computing partition functions by nested recursion -
building up super-shells one spin-orbital at a time- at each stage from ‘parent’ super-
shells (of one less spin-orbital) with smaller occupation values.  By definition all terms
entering the sums of this recursion are positive definite, and so cancellation errors are
avoided.

However for large super-shells that are nearly closed (have few vacancies or
holes) this algorithm is needlessly inefficient, as the partition function must be built by
adding electrons from an empty super-shell up to the full occupation.  An alternative
stable algorithm is easily constructed which consists of building the partition function by
adding holes, and requires far fewer steps for nearly closed super-shells.  It is presented
here for completeness, and also as a useful independent check on current algorithms.

2. A Recursion from full shells



The development here closely follows that of Gilleron and Pain.  Our objective is to
compute the super-shell partition function at (inverse) temperature β=1/kT
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usually is a reference system for perturbative approaches) is assumed to be
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From the definition of the generating function5
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it follows that the partition function for 
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where h denotes the number of holes and the n-orbital super-shell degeneracy is
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∑ .  Using the multiple derivative formula of Leibnitz,
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one obtains
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with the degeneracy and partition function of the parent (n-1 orbital) super-shell denoted
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G n−1( ) = gi
i=1
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∑  and 

€ 

UQ
n−1[ ]  respectively.  Similar to the recursion relation based upon

building up electrons ( eqn.(26) of reference [?] ) we initialize the present recursion over
holes from the no-orbital partition function values
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UQ
0[ ] = δQ,0 (7)

However, with the present relation only 
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nh( in contrast to 
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n G n( ) − h( ) ) steps are
required, and so is preferred for nearly closed shells.

3. Variations on a theme

The general approach of Gilleron and Pain (recursion over orbitals as well as
electrons/holes) introduces a flexibility that allows for the efficient specialization of
algorithms requiring partition functions.  In this section we consider the computation of
super-transition-array collisional line broadening as an illustration.

The Lorentzian full width of a transition line is proportional to the decay rates of
the initial and final configurations involved in the transition.  Let us consider electron
impacts in the dipole approximation.

Collisional excitation rates (1/sec) from a detailed configuration “c” (a vector of
integer orbital occupations 
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c ≡ n1,n2,...{ }) by an electron jumping from a lower orbital “l”
to an upper orbital “u” are given by (e.g.) VanRegemorter’s formulae6
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while the formula for de-excitation rates from configuration “c” is
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and we have denoted a configuration vector with occupation unity in the ‘i’-th orbital and
zero elsewhere as 

€ 

1i .  The Gaunt factor typically is given as a semi-empirical expression,
for example
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as taken from Sobelman7.  Detailed balance is insured by the following relation amongst
effective one-electron oscillator strengths
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which in the independent electron framework is equivalent to neglecting orbital
relaxation in the dipole matrix element
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The extension to super-configuration accounting is obtained by averaging the above
expressions over all detailed configurations (Boltzmann weighted) allowed within the
super-configuration Ξ.  For collisional excitations we obtain
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Note that this formula already contains approximations in which correlated quantities are
assumed to be un-correlated, but their correction is generally subsumed into the definition
of the approximant Gaunt factor.  Here our attention will be focused on the oft further
taken approximation
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nl gu − nu{ }
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≅ nl Ξ

gu − nu Ξ{ } (15)

This is usually done to avoid the computational burden of computing super-shell
correlated averages by traditional recursion relation methods, but does not hold when “l”
and “u” are in the same super-shell, and leads to violations of Kirchoff’s relation when
comparing emission and absorption spectra in local thermodynamic equilibrium.

We thereby look to efficiently evaluate correlated averages, for any two distinct
orbitals 
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α ≠ β  in the same super-shell, starting from the exact formula8
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The last forms are reminiscent of Fermi factors, and depend on partition functions with
formally and artificially reduced orbital degeneracies.  To compute line widths we must
re-compute 
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φ  (or 
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ˆ φ ) for all (dipole allowed) α,β combinations, and this can be inefficient
if one builds from scratch the partition functions for each altered set of orbital
degeneracies by the algorithm of Gilleron and Pain. A more efficient procedure employs
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Notice that 
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H α( )is a polynomial in z of order N-1 (N the number of sub-shells in the
super-shell).  This leads to
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Furthermore we have
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The efficiency comes from pre-computing 
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1 all[ ] by Gilleron and Pain’s method

(or the recursion over holes presented here) and storing the results.  The 

€ 

h j
α( ) and 

€ 

h j
α ,β( )

coefficients are trivially computed on demand. For example 
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performed using in-place memory (ie separate input and output arrays are not needed in
their generation) having initialized the vector as 

€ 

h j
α( ) = δ j ,0 .

4. Conclusions

The generalization to recursion over holes in lieu of electrons in the method of
Gilleron and Pain, alluded to in their paper, is presented here in detail.  The generality
and utility of their approach has been applied toward efficiently calculating correlated
population averages, making feasible studies on the sensitivity of Rosseland mean
opacities due to various approximations in collisional line broadening.
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